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 A B S T R A C T

Estimating the individuals’ potential response to varying treatment doses is crucial for decision-making 
in areas such as precision medicine and management science. Most recent studies predict counterfactual 
outcomes by learning a covariate representation that is independent of the treatment variable. However, 
such independence constraints neglect much of the covariate information that is useful for counterfactual 
prediction, especially when the treatment variables are continuous. To tackle the above issue, in this paper, 
we first theoretically demonstrate the importance of the balancing and prognostic representations for unbiased 
estimation of the heterogeneous dose–response curves, that is, the learned representations are constrained 
to satisfy the conditional independence between the covariates and both of the treatment variables and the 
potential responses. Based on this, we propose an end-to-end Contrastive balancing Representation learning 
Network (CRNet) and a three-stage Weighted Double Balancing Network (WDBN) using a partial distance 
measure, for estimating the heterogeneous dose–response curves without losing the continuity of treatments. 
Extensive experiments are conducted on synthetic and real-world datasets demonstrating that our proposal 
significantly outperforms previous methods. Code is available at: https://github.com/euzmin/Contrastive-
Balancing-Representation-Network-CRNet.
1. Introduction

Causal inference is crucial for individual decision-making, particu-
larly in answering counterfactual questions such as ‘‘What would the 
individual’s potential response have been had the person received a 
different dose of treatment?’’ (Blum & Blum, 2023; Pan, 2023; Raita, 
Camargo, Liang, & Hasegawa, 2021; Xu et al., 2023; Yuan & Zhu, 
2023). For example, precision medicine is developed by studying the re-
sponse of drug doses (i.e., continuous treatment) to the potential health 
state (i.e., potential outcome) of patients (with various medical history 
information, i.e., covariates) (Shi, Miao, & Tchetgen, 2020). With ac-
cessible observational data, an essential challenge for estimating causal 
effects is the confounding bias. This bias arises from confounders, 
which are common causes of treatment and outcome, and can lead 
to spurious correlations between the treatment and outcome, thereby 
hindering the unbiasedness of the estimation. Mealli, Pacini, and Rubin 
(2011), Pearl (2009). Another challenge is the heterogeneity of dose–
response curves, implying that individuals with different covariates will 

∗ Corresponding author.
E-mail addresses: minqinzhu@zju.edu.cn (M. Zhu), anpwu@zju.edu.cn (A. Wu), hxli@stu.pku.edu.cn (H. Li), ruoxuan.xiong@emory.edu (R. Xiong), 

libo@sem.tsinghua.edu.cn (B. Li), wufei@cs.zju.edu.cn (F. Wu), kunkuang@zju.edu.cn (K. Kuang).

have different responses even with the same dose given (Li et al., 2023, 
2023; Schwab, Linhardt, Bauer, Buhmann, & Karlen, 2020; Wager & 
Athey, 2018; Wu, Kuang, Xiong, Li, & Wu, 2023).

Compared to the binary treatment case, Dose–Response Curve es-
timation present greater challenges in adjusting for the confounding 
bias of high-dimensional covariates on continuous treatment (Hirano 
& Imbens, 2004; Imai & Van Dyk, 2004; Kennedy, Ma, McHugh, & 
Small, 2017). To tackle this problem, the Generalized Propensity Score 
(GPS) generalizes the propensity score (Rosenbaum & Rubin, 1983) 
from the binary treatment case, using a Gaussian distribution to model 
the treatment conditional density for given covariates (Hirano & Im-
bens, 2004; Imai & Van Dyk, 2004). Motivated by covariate balancing 
propensity score (Hainmueller, 2012; Imai & Ratkovic, 2014), the opti-
mal balancing weighting methods focus on learning sample weights to 
ensure the treatment and covariates are independent in the re-weighted 
data. Fong, Hazlett, and Imai (2018), Huling, Greifer, and Chen (2024), 
Vegetabile et al. (2021). Despite these methods aiming to ensure
https://doi.org/10.1016/j.neunet.2025.107600
Received 23 September 2024; Received in revised form 25 March 2025; Accepted 5
vailable online 22 May 2025 
893-6080/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
 May 2025

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0009-0008-9527-8895
https://github.com/euzmin/Contrastive-Balancing-Representation-Network-CRNet
https://github.com/euzmin/Contrastive-Balancing-Representation-Network-CRNet
mailto:minqinzhu@zju.edu.cn
mailto:anpwu@zju.edu.cn
mailto:hxli@stu.pku.edu.cn
mailto:ruoxuan.xiong@emory.edu
mailto:libo@sem.tsinghua.edu.cn
mailto:wufei@cs.zju.edu.cn
mailto:kunkuang@zju.edu.cn
https://doi.org/10.1016/j.neunet.2025.107600
https://doi.org/10.1016/j.neunet.2025.107600
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107600&domain=pdf


M. Zhu et al. Neural Networks 189 (2025) 107600 
Table 1
A comparison of the constraints employed in various representation learning 
methods for dose–response curve estimation.
 Representation learning method Formulation  
 Treatment-Balanced Representation 𝑇 ⟂⟂ 𝛷(𝑋)  
 Balancing Representation 𝑇 ⟂⟂ 𝑋 ∣ 𝛷(𝑋)  
 Prognostic Representation 𝑌 (𝑡) ⟂⟂ 𝑋 ∣ 𝛷(𝑋)  
 Double Balancing Representation (ours) (𝑇 , 𝑌 ) ⟂⟂ 𝑋 ∣ 𝛷(𝑋) 

unbiasedness by constraining treatments and confounders to be con-
ditionally independent on balancing scores, they show limited perfor-
mance in practice when the covariates are high-dimensional (Nie, Ye, 
Liu, & Nicolae, 2021; Schwab et al., 2020). Furthermore, these methods 
neglect the outcome during the modeling process of the balancing 
weight, potentially omitting confounders necessary for heterogeneous 
outcome prediction (Hansen, 2008; Stuart, Lee, & Leacy, 2013).

With the progress of deep learning, recent studies apply neural net-
works to fit dose–response curve of high-dimensional covariates (Bica, 
Jordon, & van der Schaar, 2020; Nie et al., 2021; Schwab et al., 2020). 
In deep methods, a critical challenge is how to learn appropriate covari-
ate representations for Heterogeneous Dose–Response Curve (HDRC) 
estimation (Kallus, 2020). Specifically, DRNet (Schwab et al., 2020) 
propose to learn treatment-balanced representations (Shalit, Johansson, 
& Sontag, 2017; Wang et al., 2023; Wu, Kuang, Li & Wu, 2022) which 
force the learned representations to be independent of continuous 
treatments. Nonetheless, the method’s unbiasedness hinges on the as-
sumption of invertibility concerning covariate representations, which is 
stringent for deep methods (Behrmann, Grathwohl, Chen, Duvenaud, & 
Jacobsen, 2019). In practice, imposing the constraint of independence 
between treatment assignment and covariate representations runs the 
risk of neglecting confounder information that is essential for hetero-
geneous outcome prediction, leading to biased estimates (Assaad et al., 
2021). To tackle this problem, VCNet (Nie et al., 2021) employs a 
propensity score estimator to enforce a balancing representation that 
ensures unbiasedness. Given this representation, the treatment and 
covariates are conditionally independent. This approach enables the 
unbiased estimation of the average dose–response curve. However, 
while the propensity score is the coarsest balancing score (Rosenbaum 
& Rubin, 1983), it may not adaptable for the HDRC estimation because 
of the covariate information loss (Hahn, 1998). In other words, it 
might not prognostic that potential outcomes and confounders are con-
ditionally independent given balancing scores (Hansen, 2008). For the 
prognostic representation, SCIGAN (Bica et al., 2020) directly models 
the treatment effect by generative adversarial networks (Goodfellow 
et al., 2020). However, it is important to note that SCIGAN does not 
explicitly enforce the balancing representation condition and therefore 
does not directly ensure unbiasedness.

Overall, obtaining appropriate representations that eliminates con-
founder bias and retains necessary confounder information for the 
unbiased heterogeneous dose–response curve is still a challenging prob-
lem (Wu et al., 2022). As Table  1 shown, to address this issue, we 
systematically introduce the double balancing representation, which 
is a combination of balancing and prognostic representations. This 
representation is constrained to satisfy the conditional independence 
between the covariates and both the treatments and observed out-
comes, while simultaneously considering the unbiasedness and hetero-
geneity of the dose–response curve. To model the double balancing 
representation for unbiased heterogeneous dose–response curves, we 
propose an end-to-end Contrastive balancing Representation learning 
Network, referred to as CRNet, and a three-stage Weighted Double 
Balancing Network, called WDBN.

In the end-to-end CRNet, we propose a novel contrastive regularizer, 
applying contrastive learning (Chen, Kornblith, Norouzi, & Hinton, 
2020; Grill et al., 2020; He, Fan, Wu, Xie, & Girshick, 2020) to monitor 
the balancing representation condition and maintain treatment conti-
nuity. Specifically, we create negative samples by randomly shuffling 
2 
the original covariates and treat the original covariates as positive 
samples (Arbour, Dimmery, & Sondhi, 2021; Cheng et al., 2020). 
Adaptable to the cross-entropy loss (Chen et al., 2020), we adopt partial 
distance measure (Székely & Rizzo, 2014) to evaluate the balancing 
representation condition and design a contrastive regularizer loss to 
minimize the partial distance measure while discriminating among 
positive and negative samples. Moreover, we design a mean squared 
error loss specifically tailored to address the prognostic representation 
condition, ensuring the preservation of the representation’s predictive 
power for the outcome. CRNet can be trained directly in an end-to-end 
manner.

The three-stage WDBN generalizes CRNet by incorporating sample 
weights for weighted regression. This explicit balancing of the sample 
distribution aims to improve the model’s performance, particularly 
when dealing with limited samples. In the WDBN, we first generalize 
the contrastive regularizer to a double contrastive regularizer. This new 
regularizer simultaneously enforces both the balancing and the prog-
nostic condition, thereby learning a double balancing representation. 
This sets the stage for the downstream learning of sample weights. In 
the second stage, based on the partial distance measure, we propose 
to directly learn the Double Balancing Sample Weight (DBSW) from 
the double balancing representation acquired in the first stage. In the 
third stage, we carry out a weighted regression based on the double 
balancing representation and the DBSW to finalize the model train-
ing. Empirically, we demonstrate that CRNet and WDBN outperforms 
previous methods on both synthetic and semi-synthetic datasets with 
different dimensions of continuous treatments.

We summarize our contribution as follows:

∙ For unbiased heterogeneous dose–response curve estimation, we 
systematically define a double balancing representation condition 
which satisfies the conditional independence constraint between 
the covariates and both of the continuous treatments and the 
outcomes.

∙ We propose a end-to-end CRNet and a three-stage WDBN for 
learning double balancing representations without losing the con-
tinuity of treatments. Specifically, we design contrastive losses 
with the partial distance measure of positive and negative samples 
and mean square error losses to optimize the CRNet and WDBN. 
To the best of our knowledge, this is the first paper to apply 
contrastive learning in the field of heterogeneous dose–response 
curve estimation.

∙ Empirically, varying the dimension of continuous treatments and 
covariates in both simulated and real-world datasets, we demon-
strate that the proposed CRNet and WDBN outperform other 
baseline methods on heterogeneous dose–response curve estima-
tion.

2. Related work

Dose–response curve estimation. For estimating the dose–response
curve,1 traditional methods (Fong et al., 2018; Imai & Van Dyk, 
2004; Imbens, 2000; Vegetabile et al., 2021) learn sample weights on 
selected metrics to achieve the balance of covariates to eliminate the 
confounding bias. However, these methods neglect the outcome during 
the modeling of the balancing weight, which might omit confounders 
that are necessary for outcome prediction (Hansen, 2008; Lee & Lee, 
2022; Stuart et al., 2013). Deep methods learn appropriate repre-
sentations for dose–response curve estimation (Bica et al., 2020; Nie 
et al., 2021; Schwab et al., 2020). Treatment-balanced representation 
methods, for instance, DRNet (Schwab et al., 2020) constrains repre-
sentations independent of continuous treatments. VCNet (Nie et al., 

1 We only discuss weighting methods because matching and stratification 
can be considered as particular forms of weighting.
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2021) and SCIGAN (Bica et al., 2020) constrain representations by 
treatment estimators/discriminators. None of them explicitly constrain 
that the learned representation satisfies both balancing and prognostic 
representation conditions for dose–response curve estimation. Instead, 
we propose contrastive regularizers to obtain double balancing repre-
sentations for unbiased heterogeneous dose–response curve estimation 
directly.

Contrastive representation learning. Contrastive representation learn-
ing (Chen et al., 2020; Gan et al., 2023; Grill et al., 2020; He et al., 
2020; Yao et al., 2022; Zhang, Huang, Li, & Wang, 2022; Zhang, 
Yao, Zhao, Chua, & Wu, 2021) is a self-supervised learning method. 
It approximates the latent representations by constructing contrastive 
samples (positive and negative instances) to facilitate instance dis-
crimination (Wu, Xiong, Yu, & Lin, 2018). Through the process of 
discriminating between contrastive samples, positive instances are 
closer to the original instance in the projection space, while negative 
instances are further away from the original instance in the projection 
space to maximize the lower bound of the mutual information (Huang, 
Yi, & Zhao, 2021; Wang & Isola, 2020). In this paper, we apply 
contrastive learning to regularize the representation without breaking 
the continuity of treatments. To the best of our knowledge, this is 
the first paper to apply contrastive learning in dose–response curve 
estimation.

Conditional correlation measure. We conduct an investigation into con-
ditional correlation measures. Specifically, conditional mutual informa-
tion (Fleuret, 2004; Runge, 2018; Wyner, 1978) has a solid theoretical 
foundation, but it requires modeling of conditional densities explicitly, 
which can be challenging to optimize. On the other hand, conditional 
Hilbert–Schmidt Independence Criterion (Doran, Muandet, Zhang, & 
Schölkopf, 2014; Zhang, Peters, Janzing, & Schölkopf, 2012) does not 
require modeling of conditional densities explicitly, but its value does 
not directly represent the strength of correlation when it is greater 
than zero. To verify the degree of correlation, an independence test is 
needed. Partial correlation (Baba, Shibata, & Sibuya, 2004; Lawrance, 
1976) is a coefficient that directly measures linear correlation, but it 
is limited to assessing linear relationships. CODEC (Azadkia & Chat-
terjee, 2021) can measure non-linear correlations; however, it requires 
solving the nearest neighbors problem at each iteration and cannot 
be directly optimized using gradients. Partial distance correlation, a 
widely used measure (Székely & Rizzo, 2014; Zhen, Meng, Chakraborty, 
& Singh, 2022), offers the advantage of directly comparing conditional 
correlations between variables. It stands out for its ability to be ex-
pressed as a dissimilarity, making it amenable to direct application in 
contrastive learning. Moreover, it can capture nonlinear correlations 
among variables. In our approach, we utilize the power of partial 
distance correlation by employing contrastive learning to constrain the 
double balancing representation.

3. Problem setup

For the case of continuous treatments, we observe 𝑛 units with 
baseline covariates 𝑋 ∈  ⊂ R𝑝, continuous treatments 𝑇 ∈  ⊂ R𝑞

and outcome 𝑌 ∈  ⊂ R, where 𝑝, 𝑞 is dimension of covariates and 
treatments, respectively. We also let 𝑿 ∈ 𝑛 ⊂ R𝑛×𝑝, 𝑻 ∈  𝑛 ⊂ R𝑛×𝑞 and 
𝒀 ∈ 𝑛 ⊂ R𝑛 denote all the observed baseline covariates, continuous 
treatments, and outcomes, respectively. Using Neyman–Rubin potential 
outcome framework (Rosenbaum & Rubin, 1983; Rubin, 1974), for an 
observation for unit 𝑖 with received 𝑇𝑖 = 𝑡, there is a potential outcome 
𝑌𝑖(𝑡).

Throughout this paper, we assume three assumptions that are com-
monly made in continuous treatment settings (Bica et al., 2020; Imbens, 
2000; Nie et al., 2021; Schwab et al., 2020). Specifically, for a unit 
𝑖, we assume the stable unit treatment value assumption (SUTVA) 
assumption holds that we can only observe the potential outcome 
corresponding to the received treatment level 𝑡, i.e., 𝑌 = 𝑌 (𝑡) and 
𝑖 𝑖

3 
there should not be alternative forms of the treatment and interference 
between units, capturing consistency and non-interference. Moreover, 
we assume the unconfoundedness assumption that 𝑌 (𝑡) ⟂⟂ 𝑇 ∣ 𝑋 and 
the positivity assumption that 0 < P(𝑡|𝑥) for 𝑇 = 𝑡 and 𝑋 = 𝑥. 
In this paper, ⟂⟂ denotes (conditional) independence, and P is the 
probability density function. We consider estimating the heterogeneous 
dose–response curve (HDRC): 
ℎ(𝑡, 𝑥) = E[𝑌 (𝑡) ∣ 𝑋 = 𝑥], (1)

where E denotes expectation.

4. Motivation

For estimating the heterogeneous dose–response curve, deep meth-
ods require an appropriate criterion to monitor the representation they 
produce (Kallus, 2020; Schwab et al., 2020). Inspired by the effective 
balancing score (Hu, Follmann, & Wang, 2014; Huang & Chan, 2017), 
a linear function of covariates for unbiased causal effect estimation, 
we turn to define two conditions of representation for unbiased HDRC 
estimation. 

Definition 1 (Balancing Representation Condition).  A balancing repre-
sentation 𝛷(𝑋), 𝑋 ∈  , correlated to treatments 𝑇 ∈   and outcome 
𝑌 ∈  satisfies: 
𝑋 ⟂⟂ 𝑇 ∣ 𝛷(𝑋). (2)

This condition guarantees that the treatment assignment is ignor-
able given the balancing representation when the unconfoundedness 
assumption is satisfied (for a detailed theory and proof, please refer to 
Theorem 3 of Rosenbaum & Rubin, 1983), which implies that 𝑋 ⟂⟂ 𝑇 ∣
𝛷(𝑋) is equivalent to the unbiasedness condition, i.e., 𝑌 (𝑡) ⟂⟂ 𝑇 ∣ 𝛷(𝑋). 
As a result, we can identify the average dose–response curve as follows:
E[𝑌 (𝑡)] = E𝑋 [E[𝑌 (𝑡) ∣ 𝛷(𝑥)]]

= E𝑋 [E[𝑌 (𝑡) ∣ 𝛷(𝑥), 𝑇 = 𝑡]]

= E𝑋 [E[𝑌 ∣ 𝛷(𝑥), 𝑇 = 𝑡]].

(3)

The first equation holds by the iterated expectation, the second 
equation holds by 𝑌 (𝑡) ⟂⟂ 𝑇 ∣ 𝛷(𝑋), and the third equation holds by 
the consistency assumption in SUTVA.

As we previously mentioned, when a representation satisfies the 
balancing representation condition, we say that it meets the criterion 
of unbiasedness. Nevertheless, regressing outcome 𝑌  on balancing rep-
resentation 𝛷(𝑋) and treatment 𝑇  is inadequate for the heterogeneous 
dose–response curve estimation. This inadequacy can be attributed to 
the following reasons: 

E[𝑌 (𝑡) ∣ 𝑥] ≠ E[𝑌 (𝑡) ∣ 𝛷(𝑥)]. (4)

For instance, VCNet (Nie et al., 2021), which employs a propensity 
score constraint on representation, is sufficient for unbiased average 
dose–response estimation. Nonetheless, it is important to acknowledge 
that the propensity score is the coarsest balancing score (Rosenbaum & 
Rubin, 1983). Using representations that are constrained by it might re-
sult in the loss of covariate information for outcome prediction (Hahn, 
1998). This concern is amplified in situations where VCNet discretizes 
the continuous treatment variable into discrete intervals and utilizes the 
cross-entropy loss function for training the propensity score (Li, Xiao, 
Zheng, Wu & Cui, 2023).

Definition 2 (Prognostic Representation Condition).  A prognostic repre-
sentation 𝛷(𝑋), 𝑋 ∈  correlated to treatments 𝑇 ∈   and outcome 
𝑌 ∈  satisfies: 
𝑋 ⟂⟂ 𝑌 (𝑡) ∣ 𝛷(𝑋). (5)
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Under unconfoundedness assumption, this prognostic representa-
tion condition is sufficient for unbiased heterogeneous dose–response 
curve estimation. Consider a unit 𝑖 with treatment 𝑡, we can write the 
heterogeneous dose–response curve as follows: 

E[𝑌 (𝑡) ∣ 𝑥] = E[𝑌 (𝑡) ∣ 𝛷(𝑥)] = E[𝑌 ∣ 𝛷(𝑥), 𝑇 = 𝑡]. (6)

The first equation holds by Definition  2 and the second equa-
tion holds under Definition  2 and the unconfoundedness assump-
tion (Hansen, 2008; Stuart et al., 2013). The above analysis implies 
that given the prognostic representation, the covariates are ignorable 
for the outcome prediction (Hansen, 2008).

However, learning the prognostic representation presents a chal-
lenge due to the unobservability of potential outcomes 𝑌 (𝑡) (Holland, 
1986). In practical scenarios, we are constrained to derive represen-
tations based on the condition 𝑋 ⟂⟂ 𝑌 ∣ 𝛷(𝑋), which we refer to as 
the learnable prognostic representation condition. The key difference 
between this and the prognostic representation condition is that the 
prognostic representation condition 𝑋 ⟂⟂ 𝑌 (𝑡) ∣ 𝛷(𝑋) itself contains 
all the predictive information of 𝑋 for the counterfactual outcome 
𝑌 (𝑡), whereas the learnable prognostic representation only includes 
predictive information for the observed outcome 𝑌 . In other words, the 
prognostic representation is unbiased but cannot be directly learned 
from observational data, while the learnable prognostic representation 
may be biased but can be learned from observational data.  Conse-
quently, when representations are constrained by this prognostic rep-
resentation condition between covariates and observed outcomes, there 
exists a potential concern regarding ensuring unbiasedness (Hansen, 
2008; Huang & Chan, 2017).

To address the challenges posed by both the balancing representa-
tion and prognostic representation conditions, where balancing repre-
sentation condition alone may lead to the loss of essential information 
for outcome prediction and prognostic representation condition con-
strained by observed outcomes may introduce bias, we propose the 
condition of double balancing representation. This condition aims to 
enhance both unbiasedness through the balancing representation con-
dition and the predictive capacity for heterogeneous outcomes through 
the learnable prognostic representation condition.

Definition 3 (Double Balancing Representation Condition).  A double 
balancing representation 𝛷(𝑋), 𝑋 ∈  correlated to treatments 𝑇 ∈ 
and outcome 𝑌 ∈  satisfies: 
𝑋 ⟂⟂ 𝑇 ∣ 𝛷(𝑋), 𝑋 ⟂⟂ 𝑌 ∣ 𝛷(𝑋). (7)

This condition generalizes the balancing representation and prog-
nostic representation conditions, making it possible to capture rep-
resentations from observational data that satisfy both unbiasedness 
and heterogeneity. Based on this, the HDRC admits two equivalent 
identification formulas: 
E[𝑌 (𝑡)|𝑥] = E[𝑌 |𝑥, 𝑇 = 𝑡] = E[𝑌 |𝛷(𝑥), 𝑇 = 𝑡]. (8)

It becomes evident that the second equation is valid when the condition 
of double balancing representation is met. In the context of HDRC 
estimation, the two conditions comprising the double balancing repre-
sentation are of paramount importance, as they mutually reinforce the 
effectiveness of this representation. Hence, it is imperative to verify the 
fulfillment of the double balancing representation condition.

5. End-to-end CRNet

The two conditions in double balancing representation both control 
confounder information of treatment assignment and retain necessary 
confounder information for outcome prediction. For unbiased hetero-
geneous dose–response curve estimation, we design the contrastive 
regularizer loss and mean square loss to constrain these two conditions.
4 
5.1. Contrastive regularizer

In dose–response curve estimation, the treatments can be multiple 
and continuous and the covariates are high-dimensional. To ensure 
the unbiased treatment assignment, it is necessary to quantify the 
conditional dependence of 𝑇  and 𝑋 given 𝛷(𝑋) (Rosenbaum & Rubin, 
1983). Without loss of generalization, we adopt partial distance mea-
sure (Székely & Rizzo, 2014) to achieve this goal. The partial distance 
measure is a scalar quantity that captures dependence, which equals the 
conditional correlation in Gaussian scenarios. In the non-Gaussian case, 
a partial distance of zero does not confirm conditional independence, 
however, such a measure that is closer to zero indicates a weaker 
association (refer to Sec 4.2. in Székely & Rizzo, 2014).
Partial distance measure. For all observed data, assuming three vari-
ables 𝑨,𝑩,𝒁 and their double-centered pairwise distance 𝜔(𝑨), 𝜔(𝑩), 
𝜔(𝒁), we define [𝜔(𝑨)]𝑖,𝑗 as follows: 

[𝜔(𝑨)]𝑖,𝑗 = ‖𝑨𝑖 −𝑨𝑗‖ −
1
𝑛

𝑛
∑

𝑘=1

‖

‖

‖

𝑨𝑘 −𝑨𝑗
‖

‖

‖

− 1
𝑛

𝑛
∑

𝑙=1

‖

‖

𝑨𝑖 −𝑨𝑙
‖

‖

+ 1
𝑛2

𝑛
∑

𝑘=1

𝑛
∑

𝑙=1

‖

‖

𝑨𝑘 −𝑨𝑙
‖

‖

(9)

where ‖⋅‖ is the Euclidean norm and 𝜔(⋅) ∈ R𝑛×𝑛. The form of 
𝜔(𝑩), 𝜔(𝒁) are similar. We define the inner product of 𝜔(𝑨) and 𝜔(𝑩)
as follows: 
𝜔(𝑨)⊗𝜔(𝑩) = [𝑛(𝑛 − 3)]−1

∑

𝑖≠𝑗
[𝜔(𝑨)]𝑖,𝑗 ⋅ [𝜔(𝑩)]𝑖,𝑗 , (10)

where the inner product 𝜔(𝑨) ⊗ 𝜔(𝑩) forms a Hilbert space (refer to 
Theorem 1 and the corresponding proof on page 6 of Székely & Rizzo, 
2014). The double-centered pairwise distance orthogonal projection of 
𝑨 on 𝒁 is formulated as follows: 
proj𝒁 (𝑨) = 𝜔(𝑨) − 𝜔(𝑨)⊗𝜔(𝒁)[𝜔(𝒁)⊗𝜔(𝒁)]−1𝜔(𝒁), (11)

and the projection of 𝜔(𝑩) on 𝜔(𝒁) is similar. Then, we formulate the 
partial distance measure 𝐷𝒁 (𝑨,𝑩) as follows: 

𝐷𝒁 (𝑨,𝑩) =
|

|

proj𝒁 (𝑨)⊗ proj𝒁 (𝑩)|
|

‖

‖

proj𝒁 (𝑨)‖
‖

⋅ ‖
‖

proj𝒁 (𝑩)‖
‖

, (12)

where | ⋅ | is the absolute operation. The norm ‖
‖

proj𝒁 (𝑨)‖
‖

 is defined as:
‖

‖

proj𝒁 (𝑨)‖
‖

=
√

(proj𝒁 (𝑨)⊗ proj𝒁 (𝑨)) (13)

and the norm ‖
‖

proj𝒁 (𝑩)‖
‖

 similarly defined.
Given the partial distance measure, a key challenge relates to the 

design of the loss function for learning the balancing representation (Le-
Cun, Chopra, Hadsell, Ranzato, & Huang, 2006). The motivation for 
employing contrastive learning stems from the limitations of the eval-
uation metrics for conditional independence. When measuring con-
ditional associations for three high-dimensional or multi-dimensional 
indicators, there is currently no metric, including the partial dis-
tance measure, that guarantees conditional independence when the 
conditional association indicator value is zero within a finite sample 
size (Azadkia & Chatterjee, 2021; Doran et al., 2014; Runge, 2018; 
Székely & Rizzo, 2014; Zhang et al., 2012; Zhen et al., 2022).

In this paper, we consider this to be a potential mode collapse issue 
(Goodfellow et al., 2020; Jing, Vincent, LeCun, & Tian, 2021). Mode 
collapse is a fundamental problem in representation learning (Chen 
& He, 2021; Chen et al., 2020; He et al., 2020) and arises when 
a model fails to adequately capture the diverse patterns within the 
data, instead collapsing them into a single mode or a limited set of 
modes. For instance, if the partial distance value is zero, but this 
does not confirm conditional independence, it becomes susceptible to 
mode collapse. This issue may arise when one naively minimizes partial 
distance measures for the original observed samples. Such a situation 
can introduce bias into the learned representation, which in turn affects 
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Fig. 1. Contrastive regularizer. The 𝑛 covariates 𝑿 undergo a transformation via the encoder 𝛷 resulting in 𝛷(𝑿). 𝛷(𝑿) transforms to 𝑔(𝛷(𝑿)) through projection head 𝑔 (Chen 
et al., 2020). 𝑔(𝛷(𝑿)) is directly constrained by 𝓁𝐶𝑅

𝛷 (𝑿,𝑻 ). To simplify notation, we use 𝛷(𝑿) in the context to represent 𝑔(𝛷(𝑿)). 𝐷𝛷(𝑿) and 𝐷𝛷(𝑿′ ) are partial distance measure 
of positive/negative samples (Székely & Rizzo, 2014).
the estimation of heterogeneous dose–response curves (Li, Xiao, et al., 
2023). To obviate it, we adopt the contrastive learning (Chen et al., 
2020) to alleviate the issue of insufficient correlation measurement by 
introducing positive and negative sample pair constraints to the double 
balancing representation.

We propose a novel Contrastive Regularizer (CR) to constrain the 
balancing representation. Since directly employing partial distance cor-
relation carries the risk of misjudging some conditionally associated 
samples as conditionally independent, we introduce positive and nega-
tive sample pairs. In these pairs, the ideal representation of the positive 
samples satisfies conditional independence, while the ideal representa-
tion of the negative samples does not. By enforcing the constraint that 
the partial distance correlation of the positive sample representation is 
significantly smaller than that of the negative sample representation, 
we can enhance the evaluation capability of partial distance correla-
tion for conditional independence given a specific representation. To 
construct the positive and negative samples for contrastive learning, we 
randomly shuffle 𝑿 in the original data 𝑚 times to get 𝑛 ∗ 𝑚 permuted 
data 𝑿′ that 𝑿′ ⟂⟂ 𝑻  (Arbour et al., 2021; Cheng et al., 2020). Then we 
name 𝑿 positive samples and 𝑿′ negative samples and define their partial 
distance measure as follows: 

𝐷𝛷(𝑿)(𝑿,𝑻 ) =
|

|

|

proj𝛷(𝑿)(𝑿) ⋅ proj𝛷(𝑿)(𝑻 )
|

|

|

‖

‖

‖

proj𝛷(𝑿)(𝑿)‖‖
‖

⋅ ‖‖
‖

proj𝛷(𝑿)(𝑻 )
‖

‖

‖

,

𝐷𝛷(𝑿′)(𝑿,𝑻 ) =
|

|

|

proj𝛷(𝑿′)(𝑿) ⋅ proj𝛷(𝑿′)(𝑻 )
|

|

|

‖

‖

‖

proj𝛷(𝑿′)(𝑿)‖‖
‖

⋅ ‖‖
‖

proj𝛷(𝑿′)(𝑻 )
‖

‖

‖

.

(14)

As Fig.  1 shown, given the positive representation 𝛷(𝑿) and nega-
tive representation 𝛷(𝑿′) from 𝑛 observed covariates 𝑿 and 𝑛 shuffled 
covariates 𝑿′, the correctly specified function 𝛷 should satisfy that 
𝐷𝛷(𝑿) (𝑿,𝑻 ) ≪ 𝐷𝛷(𝑿′) (𝑿,𝑻 ). Then we propose to perform contrastive 
learning for the positive samples 𝑿 and negative samples 𝑿′. The 
contrastive regularizer loss is formulated as follows: 

𝓁CR
𝛷 (𝑿,𝑻 ) = 𝐷𝛷(𝑿)(𝑿,𝑻 ) − log

𝑚
∑

𝑗=1
exp

(

𝐷𝛷(𝑿′
(𝑗))

(𝑿,𝑻 )
)

, (15)

where 𝑚 represents the number of shuffles, and 𝑿′
(𝑗) denotes the shuf-

fled covariates from the 𝑛 negative samples acquired during the 𝑗
shuffle. The total count of negative samples is given by 𝑛 ∗ 𝑚. During 
the training procedure, for each batch of samples, we perform ran-
dom shuffling of the original covariates within the batch a total of 𝑚
times (Cheng et al., 2020).

It is worth noting that the contrastive regularizer serves a dual pur-
pose: it preserves the balancing representation condition and ensures 
5 
the continuity of treatments, thereby enhancing the quality of prog-
nostic representation. More specifically, given that all discrimination 
operates at the instance level (Wu et al., 2018), there is no necessity 
to discretize treatment variables into bins (Bica et al., 2020; Nie et al., 
2021; Schwab et al., 2020). Consequently, the continuity of treatments 
is inherently maintained. Furthermore, the contrastive regularizer with 
positive and negative samples effectively captures diverse informa-
tion from covariates 𝑋 for the learned representation. This aspect 
aligns with the requirement of addressing prognostic representation 
condition, aiming to capture the heterogeneity in causal effects among 
various study subjects (Hansen, 2008).

5.2. End-to-end CRNet

Different from the balancing representation condition, which fo-
cuses on the treatment assignment. The prognostic representation con-
dition focus on the outcome prediction power in representation. In this 
paper, we firstly design a end-to-end two-head neural network, which 
encodes the treatments 𝑇  through 𝛹 and covariates 𝑋 through 𝛷 for 
representations 𝛹 (𝑇 ) and 𝛷(𝑋). Then, we adopt a mean square error 
loss (MSE) to directly constrain the condition in the double balancing 
representation that 𝑌 ⟂⟂ 𝑋|𝛷(𝑋). In particular, for a unit 𝑖, the MSE 
loss is formulated as follows: 
𝓁MSE(𝑋𝑖, 𝑇𝑖, 𝑌𝑖) = (𝑌𝑖 − ℎ(𝛷(𝑋𝑖), 𝛹 (𝑇𝑖)))2. (16)

Although the MSE loss has been commonly employed in previous 
works for outcome prediction (Bica et al., 2020; Nie et al., 2021; 
Schwab et al., 2020), it is important to note that most of these ap-
proaches do not constrain the prognostic representation condition ef-
fectively. To elaborate, DRNet (Schwab et al., 2020) imposes the MSE 
loss on a treatment-balanced representation that is independent of 
treatments 𝑇 . However, as treatments 𝑇  is correlated with covariates 𝑋, 
this approach may lead to a loss of essential confounder information for 
outcome prediction. VCNet (Nie et al., 2021) utilizes the MSE loss on 
representations constrained by a propensity score estimator, which is 
considered the coarsest balancing score (Rosenbaum & Rubin, 1983). 
Representations subject to this constraint may also fail to satisfy the 
prognostic representation condition (Hahn, 1998). Furthermore, these 
methods tend to neglect the issue of mode collapse, which can compro-
mise their ability to estimate heterogeneous causal effects effectively. 
Different from them, our MSE loss is imposed on double balancing rep-
resentations. We achieve this by employing the contrastive regularizer 
to preserve the confounder information of 𝑋. This facilitates the CRNet 
to learn prognostic representation as much as possible.
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Fig. 2. The end-to-end CRNet. For the training procedure, the representations 𝛷(𝑿) constrained by contrastive loss 𝓁CR
𝛷 (𝑿,𝑻 ) are concatenated and input to MLPs ℎ to obtain the 

estimated outcome 𝑌  by the final loss in Eq. (17). The final objective is to minimize the loss. For the inference procedure, the estimated HDRC is obtained by ℎ(𝛷(𝑿), 𝛹 (𝑻 )).
In summary, we propose an end-to-end neural network framework 
called CRNet for the estimation of HDRC. As depicted in Fig.  2, the 
overall architecture of CRNet comprises three distinct blocks: (a) Two-
Head Encoder. The first head, denoted as 𝛷, encodes covariates 𝑿 into 
representation 𝛷(𝑿). The role of the second head, denoted by 𝛹 , is to 
encode the treatments to the representation 𝛹 (𝑻 ). (b) Projection Head. 
The projection head, denoted by 𝑔, project the covariate representation 
𝛷(𝑿) into 𝑔(𝛷(𝑿)) for the partial distance measure involving covariates 
𝑿 and treatments 𝑻 . (c) Outcome Estimator. The outcome estimator 
ℎ takes the concatenated representations of covariates and treatments, 
𝛷(𝑿) and 𝛹 (𝑻 ), as input and transforms them into ℎ(𝛷(𝑿), 𝛹 (𝑻 )). 
This estimated outcome ℎ(𝛷(𝑿), 𝛹 (𝑻 )) approximates the observed 𝑌  by 
the regularized regression loss 𝓁f inal

CR (𝑿,𝑻 , 𝒀 ), which is formulated as 
follows: 

𝓁f inal
CR (𝑿,𝑻 , 𝒀 ) =

𝑛
∑

𝑖=1
𝓁MSE(𝑋𝑖, 𝑇𝑖, 𝑌𝑖) + 𝛼 ∗ 𝓁CR

𝛷 (𝑿,𝑻 ), (17)

where 𝛼 represents the hyperparameter. The use of both the MSE loss 
𝓁MSE and the contrastive regularizer loss 𝓁CR

𝛷  is necessary for unbiased 
estimation of HDRC. The loss 𝓁MSE is used to minimize the difference 
between the predicted outcome and the observed outcome, thus ensur-
ing that the model can make reliable predictions. Without this loss, the 
CRNet model would not be able to accurately predict the outcomes, 
resulting in loss of prediction capacity. On the other hand, the loss 
𝓁CR
𝛷  helps to prevent treatment assignment bias and outcome overfitting 
by comparing the representation of positive/negative samples. Without 
this loss, the CRNet model might induce treatment assignment bias or 
mode collapse, leading to inaccurate outcome prediction. In short, the 
two losses in 𝓁f inal

CR  complement each other.

Algorithm 1 The end-to-end training procedure of CRNet
Require: Training set data: 𝑶; Loss function: 𝓁f inal

CR ; Learning rate: 𝜖; Number 
of iterations: 𝐼 ; CRNet: 𝜏; All parameters of CRNet: 𝛩CRNet .

1: for 𝑖 = 1 to 𝐼 do 
2: Train CRNet 𝜏 on 𝑶;
3: 𝛩CRNet ← 𝛩CRNet − 𝜖∇𝓁f inal

CR (𝛩CRNet ;𝑂).
4: end for
Ensure: CRNet 𝜏.

The end-to-end algorithm of CRNet training is presented in Algo-
rithm 1. The advantage of this CRNet lies in its simplicity, making it 
ideal to serve as the backbone for new modules. The method we will 
introduce in the next section provides an example of how CRNet can 
be utilized for expansion.

6. Three-stage WDBN

The end-to-end CRNet aims to capture confounder information as 
much as possible by learning a double balancing representation. Ide-
ally, if the confounder distribution is learned well enough, it can esti-
mate unbiased heterogeneous dose–response curves (HDRC). However, 
in settings with high-dimensional covariates and multi-dimensional 
continuous treatments, learning a sufficiently accurate confounder dis-
tribution from a limited sample size is challenging. To further improve 
the model’s performance, following (Fong et al., 2018; Huling et al., 
6 
2024; Imai & Van Dyk, 2004; Vegetabile et al., 2021), we can also 
learn a sample weight based on the double balancing representation 
to explicitly balance the distribution of samples.

6.1. Double contrastive regularizer

In CRNet, we use 𝓁CR
𝛷  and 𝓁MSE to respectively constrain the bal-

ancing representation condition 𝑋 ⟂⟂ 𝑇 |𝛷(𝑋) and learnable prognostic 
representation condition 𝑋 ⟂⟂ 𝑌 |𝛷(𝑋). This is reasonable in an end-
to-end training strategy because the model’s predictions satisfy both 
unbiasedness and retain the predictive information for outcomes. How-
ever, when we aim to directly learn the sample weight from the 
representation 𝛷(𝑋), we prefer it to explicitly satisfy the double balanc-
ing representation condition, 𝑋 ⟂⟂ 𝑇 |𝛷(𝑋), 𝑋 ⟂⟂ 𝑌 |𝛷(𝑋), rather than 
merely constraining 𝑋 ⟂⟂ 𝑇 |𝛷(𝑋) while regressing outcomes. There-
fore, we extend the contrastive regularizer to the double contrastive 
regularizer.

To construct the new positive and negative samples for directly con-
straining the double balancing representation condition, we randomly 
shuffle the 𝑛 units of 𝑿 in the original data 𝑚 times to get 𝑛 ∗ 𝑚 per-
muted data 𝑿′ that 𝑿′ ⟂⟂ 𝑺 where 𝑺 = 𝑻 ⊕𝒀 , means the concatenation 
of treatment and outcomes. ⊕ is the concatenation operation. Then, 
their partial distance measure are formulated as follows: 

𝐷𝛷(𝑿)(𝑿,𝑺) =
|

|

|

proj𝛷(𝑿)(𝑿) ⋅ proj𝛷(𝑿)(𝑺)
|

|

|

‖

‖

‖

proj𝛷(𝑿)(𝑿)‖‖
‖

⋅ ‖‖
‖

proj𝛷(𝑿)(𝑺)
‖

‖

‖

,

𝐷𝛷(𝑿′)(𝑿,𝑺) =
|

|

|

proj𝛷(𝑿′)(𝑿) ⋅ proj𝛷(𝑿′)(𝑺)
|

|

|

‖

‖

‖

proj𝛷(𝑿′)(𝑿)‖‖
‖

⋅ ‖‖
‖

proj𝛷(𝑿′)(𝑺)
‖

‖

‖

.

(18)

To perform contrastive learning for the positive samples 𝑿 and 
negative samples 𝑿′, we modify the contrastive regularizer loss 𝓁CR

𝛷  in 
Eq.  (15) to the double contrastive regularizer loss, which is formulated 
as follows: 

𝓁DCR
𝛷 (𝑿,𝑺) =

𝑛
∑

𝑖=1
𝓁MSE(𝑋𝑖, 𝑇𝑖, 𝑌𝑖) + 𝛼(𝐷𝛷(𝑿)(𝑿,𝑺)

− log
𝑚
∑

𝑗=1
exp (𝐷𝛷(𝑿′

(𝑗))
(𝑿,𝑺))).

(19)

Similar to the contrastive regularizer, the double contrastive reg-
ularizer serves a dual purpose. It not only explicitly preserving the 
double balancing representation condition but also ensuring the con-
tinuity of treatments, thereby benefiting the prediction of outcomes, 
owing to its enhancement of representation quality. The key differ-
ence between the double contrastive regularizer and the contrastive 
regularizer is that the former explicitly enforces the double balancing 
representation condition, rather than just the balancing representation 
condition. This is done in order to prepare the sample weight learning 
task for downstream applications.

6.2. Double balancing sample weight

To explicitly balance the treatment assignment and thereby improve 
the model’s ability to predict HDRC,  we propose learning the sample 
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weights based on the double balancing representation, which are then 
used for weighted regression on the outcomes. First, we define the 
Double Balancing Sample Weight (DBSW) as 𝒘 = (𝑤1,… , 𝑤𝑛). Then, 
we define the weighted double balancing representation 𝛷(𝑿̃) as: 

𝛷(𝑿̃) = 𝒘𝛷(𝑿). (20)

And the double balancing sample weight is determined by the 
following objective function: 

𝒘 ∈ argmin
𝒘=(𝑤1 ,…,𝑤𝑛)

−𝐷𝛷(𝑿̃)(𝑿,𝑺) + 𝛽 1
𝑛2

𝑛
∑

𝑖=1
𝑤2

𝑖 ,

such that 
𝑛
∑

𝑖=1
𝑤𝑖 = 𝑛,𝑤𝑖 ≥ 0,

(21)

where 𝛽 > 0 is the hyperparameter. In this objective function, the 
first term implies that we desire the weighted samples to satisfy the 
condition 𝑿 ̸⟂⟂ 𝑺|𝛷(𝑿̃). The underlying intuition here is that by con-
straining 𝑿 ⟂⟂ 𝑺|𝛷(𝑿) to satisfy the double balancing representation 
condition, the learned 𝛷(𝑿) aims to encompass as much information 
about all confounders as possible. Consequently, we need the weighted 
representation 𝛷(𝑿̃) to not satisfy this condition, in order to balance 
the distribution of confounders. This ensures that the predictions based 
on the representation 𝛷(𝑿̃) are unaffected by the distribution of con-
founders. The second term in the objective function serves as a penalty 
term, the purpose of which is to constrain the variance of the sample 
weight distribution. By avoiding extreme values, it aims to enhance the 
stability of the sample weights. Furthermore, the purpose of defining 
the two conditions, ∑𝑛

𝑖=1 𝑤𝑖 = 𝑛,𝑤𝑖 ≥ 0, is to prevent the sample weights 
from falling into trivial solutions.

We apply a neural network module 𝑏 to learn the DBSW from the 
representation 𝛷(𝑿). Specifically, 𝑏 is composed of a single-layer MLP 
followed by an ELU activation function and another single-layer MLP. 
We then obtain the DBSW 𝑤𝑖 from the following formula: 

𝑤𝑖 =
𝑤̃𝑖

∑𝑛
𝑖=1 𝑤̃𝑖∕𝑛

,where 𝑤̃𝑖 = Sof tplus(𝑏(𝛷(𝑋𝑖))). (22)

where 𝑤̃𝑖 is the unnormalized sample weight. This equation implies 
that 𝑏(𝛷(𝑋𝑖)) will pass through a Softplus activation function to ensure 
𝑤𝑖 ≥ 0, and then be normalized to satisfy the condition ∑𝑛

𝑖=1 𝑤𝑖 = 𝑛. 
Then, the loss function for learning the DBSW is formulated as: 

𝓁W(𝑿,𝑺,𝒘) = −𝐷𝛷(𝑿̃)(𝑿,𝑺) + 𝛽 1
𝑛2

𝑛
∑

𝑖=1
𝑤2

𝑖 . (23)

After minimizing 𝓁W, we can apply the learned DBSW for the final 
weighted regression of the outcomes.
Algorithm 2 The three-stage training procedure of WDBN
Require: Training set data: 𝑶; Loss functions: 𝓁DCR

𝛷 ,𝓁W,𝓁WMSE; Learning rate: 
𝜖; Number of iterations in three stages: 𝐼1, 𝐼2, 𝐼3; WDBN: 𝜏; Parameters of 
WDBN: 𝛩𝛷 , 𝛩𝛹 , 𝛩𝑔 , 𝛩𝑏, 𝛩ℎ.

1: for 𝑖 = 1 to 𝐼1 do 
2: Train DCR modules 𝛷,𝛹, 𝑔 on 𝑶; {First stage}
3: 𝛩𝛷 ← 𝛩𝛷 − 𝜖∇𝓁DCR

𝛷 (𝛩𝛷;𝑂); 
4: 𝛩𝛹 ← 𝛩𝛹 − 𝜖∇𝓁DCR

𝛷 (𝛩𝛹 ;𝑂); 
5: 𝛩𝑔 ← 𝛩𝑔 − 𝜖∇𝓁DCR

𝛷 (𝛩𝑔 ;𝑂).
6: end for
7: for 𝑖 = 1 to 𝐼2 do 
8: Train DBSW module 𝑏 on 𝑶; {Second stage}
9: 𝛩𝑏 ← 𝛩𝑏 − 𝜖∇𝓁W

𝛷 (𝛩𝑏;𝑂).
10: end for
11: for 𝑖 = 1 to 𝐼3 do 
12: Train WMSE module ℎ on 𝑶; {Third stage}
13: 𝛩ℎ ← 𝛩ℎ − 𝜖∇𝓁WMSE(𝛩ℎ;𝑂).
14: end for
Ensure: WDBN 𝜏.
7 
6.3. Three-stage WDBN

Based on the proposed double contrastive regularizer and double 
balancing sample weight, we can design a Weighted Double Balancing 
Network (WDBN) to implement the weighted regression for HDRC.

As Fig.  3 shown, the overall architecture of WDBN comprises four 
distinct blocks: (a) Two-Head Encoder. The first head, denoted as 
𝛷, encodes covariates 𝑿 into representation 𝛷(𝑿). The second head, 
denoted by 𝛹 , encodes treatments 𝑻  into representation 𝛹 (𝑻 ); (b) 
Projection Head. The projection head, denoted by 𝑔, project the covari-
ate representation 𝛷(𝑿) into 𝑔(𝛷(𝑿)) for the partial distance measure 
involving covariates 𝑿 and the concatenation 𝑺 of treatments and 
outcomes; (c) Weight Learner. The weight learner 𝑏 learns the DBSW 
from the double balancing representation, which is constrained by 𝓁W. 
(d) Outcome Estimator. The outcome estimator ℎ takes the concate-
nated representations of covariates and treatments, 𝛷(𝑿) and 𝛹 (𝑻 ), as 
input and transforms them into ℎ(𝛷(𝑿), 𝛹 (𝑻 )). This estimated outcome 
ℎ(𝛷(𝑿), 𝛹 (𝑻 )) approximates the observed 𝑌  by the Weighted Mean 
Square Error (WMSE) loss, which is formulated as follows: 

𝓁WMSE(𝑿,𝑺,𝒘) =
𝑛
∑

𝑖=1
𝑤𝑖(𝑌𝑖 − ℎ(𝛷(𝑋𝑖), 𝛹 (𝑇𝑖)))2. (24)

The three-stage algorithm of WDBN training is presented in Algo-
rithm 2. The inference procedure is similar to CRNet that the estimated 
HDRC is obtained by ℎ(𝛷(𝑿), 𝛹 (𝑻 )).

In comparison to the end-to-end CRNet, the three-stage WDBN 
introduces sample weights to explicitly balance the sample distribution 
through weighted regression, thereby enhancing the prediction capa-
bility for HDRC within limited samples. To ensure the stability of this 
model, we need to train each module in three separate stages, which 
reduces the training efficiency compared to the end-to-end CRNet. In 
addition to reducing training efficiency compared to the end-to-end 
CRNet, WDBN also incurs higher training costs, especially for high-
dimensional datasets. Therefore, the choice between CRNet and WDBN 
can be seen as a trade-off between performance and cost (including 
both training and inference costs). In summary, CRNet is suitable for 
clean and abundant datasets, as it has lower training costs, can be 
deployed quickly, and delivers effective results. In contrast, WDBN is 
more appropriate for datasets with insufficient data and imbalanced 
distributions, as it better balances the data.

7. Experiments

Since there are no widely used open-source real-world datasets 
for continuous treatment effect estimation, we follow the approach of 
VCNet and SCIGAN (Bica et al., 2020; Nie et al., 2021) by conducting 
semi-synthetic experiments on the IHDP2 and News3 datasets to assess 
the real-world applicability of our method.

The IHDP dataset is a real-world dataset in a binary treatment set-
ting, used to study the relationship between ‘‘whether an expert visits 
a household’’ and ‘‘an infant’s later cognitive test scores.’’ We include 
IHDP to assess the applicability of our method in the education domain. 
The News dataset, on the other hand, is a real-world dataset in a multi-
treatment setting, designed to analyze the impact of different devices 
on user retention time. We include News to explore the potential of our 
method in marketing applications.

Overall, we simulate 4 synthetic datasets and 5 semi-synthetic 
datasets to verify the performance of our proposed CRNet and WDBN. 
All experiments are conducted on Intel(R) Xeon(R) Gold 6240 CPU @ 
2.60 GHz and NVIDIA GeForce RTX 3090.

2 https://www.fredjo.com
3 https://paperdatasets.s3.amazonaws.com/news.db

https://www.fredjo.com
https://paperdatasets.s3.amazonaws.com/news.db
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Fig. 3. The three-stage WDBN. For the training procedure, the representations 𝛷(𝑿) and 𝛹 (𝑻 ) are constrained by double contrastive loss 𝓁DCR
𝛷 (𝑿,𝑻 ). Subsequently, 𝛷(𝑿) and 𝛹 (𝑻 )

are concatenated and input to the MLPs 𝑏 to obtain the DBSW 𝐰 using the loss 𝓁W
𝛷 , and input to the MLPs ℎ to obtain the estimated outcome 𝑌  by the WMSE loss 𝓁WMSE. For 

the inference procedure, the estimated HDRC is obtained by ℎ(𝛷(𝑿), 𝛹 (𝑻 )).
7.1. Experimental setup

Synthetic data generation. We simulate synthetic data in the following 
manner. For each unit 𝑖 ∈ {1, 2,… , 𝑛}, we generate 𝑝 = 100 covariates 
from an independent and identically distributed (i.i.d.) normal distri-
bution, i.e., 𝑿𝑖 ∼  (𝟎𝑝,𝑬𝑝), where 𝟎𝑝 denotes a 𝑝-dimensional vector 
with all elements equal 0, and 𝑬𝑝 represents 𝑝-order identity matrix. 
We generate 𝑞 treatments using the following rules: 

𝑇𝑖,𝑗 = 0.2
5
∑

𝑗=1
𝑊𝑗𝑋𝑖,𝑗 +

1
𝑝 − 10

𝑝
∑

𝑗=11
𝑊𝑗𝑋

2
𝑖,𝑗 + 𝑇̃𝑖,𝑗 + 0.5𝑇̃ 3

𝑖,𝑗𝑋𝑖,𝑝−𝑗 . (25)

Here, we denote 𝑇̃𝑖,𝑗 ∼  (0, 1), 𝑊𝑗 ∼ 𝑈 (0.5, 1) for 𝑗 ∈ {1, 2,… , 𝑞}. The 
outcome is generated according to the following rules: 

𝑌𝑖 = 0.5
𝑞
∑

𝑗=1
𝑊 𝑇

𝑗 |𝑇𝑖,𝑗 | + 0.5
10
∑

𝑗=6
𝑊𝑗𝑋

2
𝑖,𝑗 +

𝑝
∑

𝑗=11
𝑊𝑋𝑖 + 0.5

𝑞
∑

𝑗
𝑇𝑖,𝑗𝑋𝑖,𝑞−𝑗−10.

(26)

Here, we denote 𝑊 𝑇
𝑗 ∼ 𝑈 (0.5, 1). Then, we design 4 simulation datasets 

and name them Data-𝑞 where 𝑞 means the dimension of 𝑻  and 𝑿
(e.g., Data-1 means a simulation with 1 treatment, 100 covariates). 
Then we sample 2100/600/300 units for training/validation/test for 
each data.
Semi-synthetic data generation. We proceed to perform semi-simulation 
experiments with the aim of demonstrating the robustness of our 
method across a range of settings. In our semi-synthetic experiments, 
we retain the original covariates of these datasets but extend the treat-
ment variables to multi-dimensional continuous treatments to align 
with our study’s setting. To evaluate the results, we generated the true 
causal effects based on the data and covariates. We sample units from 
the IHDP data to create the training, validation, and test sets, with 
522/150/75 units for each data split. For the News dataset, we perform 
data splits into training, validation, and test sets with 2100/600/300 
units, respectively.
Baselines and evaluation. We compare our model with the following 
baselines in the above datasets: For statistical methods, we use (1)
Causal Forest (Wager & Athey, 2018), a random forest algorithm for 
causal inference. (2) GPS (Imbens, 2000), a generalized propensity 
score for continuous treatments. (3) CBGPS (Fong et al., 2018), a gener-
alized covariate balancing propensity score (Imai & Ratkovic, 2014) for 
continuous treatments. For deep methods, we apply (4) SCIGAN (Bica 
et al., 2020), a hierarchical generative adversarial network (Good-
fellow et al., 2020). (5) DRNet (Schwab et al., 2020), a multi-head 
deep model stratified according to treatment. (6) VCNet (Nie et al., 
2021), a varying coefficient neural network with functional targeted 
regularization.
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Additionally, we incorporate three classic deep methods designed 
for binary treatment settings to highlight the necessity of specially 
designed model structures for continuous treatment scenarios: (7) TAR-
Net (Shalit et al., 2017), a two-headed neural network model, where 
each head corresponds to the outcome for the treatment and control 
groups, respectively. (8) CFRNet (Shalit et al., 2017), a neural network 
model based on TARNet that introduces a constraint ensuring inde-
pendence between covariate representations and treatment variables. 
(9) DragonNet (Shi, Blei, & Veitch, 2019), a doubly robust three-
headed neural network, where each head corresponds to the propensity 
score, the treatment group outcome, and the control group outcome, 
respectively. We define the treatment variable for these methods as 
follows: 

𝑇̄𝑖 = I

(

1
𝑞

𝑞
∑

𝑗=1
𝑇𝑖𝑗 >

1
𝑛𝑞

𝑛
∑

𝑖=1

𝑞
∑

𝑗=1
𝑇𝑖𝑗

)

, (27)

where I(⋅) represents the treatment variable input for binary treatment 
methods. This formulation effectively reduces the multi-dimensional 
treatment values to a one-dimensional proxy by taking the average 
across all dimensions. If the proxy treatment value for the 𝑖th sample 
is greater than the overall sample mean of the proxy treatment, 𝑇̄𝑖 is 
assigned a value of 1; otherwise, it is assigned 0.

For all experiments, we perform 30 replications to report the mean 
integrated square error (MISE) and the standard deviations (std) of 
HDRC estimation: 

MISE = 𝑠−1
𝑠
∑

𝑖=1
∫

𝑏

𝑎
(ℎ(𝑡, 𝑋𝑖) − ℎ̂(𝑡, 𝑋𝑖))2𝑑𝑡, (28)

where 𝑠 is the test sample size and [𝑎, 𝑏] is the interval of treatment 
values.

7.2. Results

Performance comparison. We carry out simulation and semi-simulation 
experiments, as presented in Tables  2 and 3. In this table, bold text 
indicates the optimal performance, while underlined text represents 
suboptimal performance. In these experiments, as the dimensionality 
of treatments increases, traditional statistical methods GPS, CBGPS 
and Causal Forest tend to fail, highlighting their limitations in han-
dling complex, high-dimensional data. The binary treatment methods 
perform poorly across all dataset settings, which indicates that di-
rectly applying binary treatment methods to model data from multi-
dimensional continuous treatment scenarios results in significant infor-
mation loss, emphasizing the necessity of designing models specifically 
for multi-dimensional continuous treatment scenarios. SCIGAN’s poor 
performance in high-dimensional data reflects the instability inherent 
in generative adversarial networks while also emphasizing the necessity 
of balancing representation condition.
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Table 2
Performance comparison (MISE ± std) and ablation studies on simulation data.
 Method Data-1 Data-2 Data-5 Data-10  
 GPS (Imai & Van Dyk, 2004) 57.7 ± 18 57.8 ± 14 57.4 ± 15 78.0 ± 19  
 CBGPS (Fong et al., 2018) 57.8 ± 18 57.8 ± 14 57.3 ± 15 70.5 ± 19  
 Causal Forest (Wager & Athey, 2018) 1.83 ± 0.6 2.50 ± 0.7 5.16 ± 0.9 14.9 ± 2.4  
 TARNet (Shalit et al., 2017) 57.7 ± 18 57.8 ± 14 57.2 ± 15 69.8 ± 19  
 CFRNet (Shalit et al., 2017) 57.8 ± 18 57.7 ± 14 57.1 ± 15 69.6 ± 19  
 DragonNet (Shi et al., 2019) 113 ± 38 119 ± 42 117 ± 30 142 ± 30  
 DRNet (Schwab et al., 2020) 2.35 ± 0.7 3.49 ± 1.4 6.39 ± 2.1 18.5 ± 4.7  
 SCIGAN (Bica et al., 2020) 15.0 ± 13 26.1 ± 13 43.6 ± 15 59.6 ± 26  
 VCNet (Nie et al., 2021) 5.79 ± 4.8 6.41 ± 4.7 13.7 ± 5.7 28.2 ± 7.1  
 CRNet 1.69 ± 0.5 2.07 ± 0.8 3.05 ± 0.7 7.55 ± 2.6  
 w/o BR 2.04 ± 0.5 2.56 ± 1.0 4.76 ± 1.2 9.69 ± 5.1  
 w/o PR 52.9 ± 16 53.9 ± 14 51.0 ± 13 55.2 ± 16  
 WDBN 1.20 ± 0.4 1.57 ± 0.6 2.57 ± 0.6 5.81 ± 1.5 
 w/o DBSW 1.88 ± 0.7 2.35 ± 0.7 3.99 ± 1.1 9.27 ± 2.1  
Table 3
Performance comparison (MISE ± std) and ablation studies on real-world data IHDP-𝑞 and News-𝑞.
 Method IHDP-1 News-2 News-4 News-8 News-16  
 GPS (Imai & Van Dyk, 2004) 0.98 ± 0.4 84.3 ± 4.6 83.8 ± 4.5 87.8 ± 3.8 89.0 ± 4.2  
 CBGPS (Fong et al., 2018) 1.03 ± 0.4 84.1 ± 4.4 83.6 ± 4.6 85.5 ± 5.0 86.7 ± 4.5  
 Causal Forest (Wager & Athey, 2018) 0.79 ± 0.3 26.8 ± 15 26.9 ± 11 47.9 ± 21 82.7 ± 81  
 TARNet (Shalit et al., 2017) 1.01 ± 0.4 264 ± 9.1 266 ± 7.8 270 ± 10 277 ± 22  
 CFRNet (Shalit et al., 2017) 1.01 ± 0.4 265 ± 9.8 264 ± 6.0 269 ± 10 277 ± 19  
 DragonNet (Shi et al., 2019) 6.18 ± 9.7 479 ± 31 470 ± 37 479 ± 49 493 ± 40  
 DRNet (Schwab et al., 2020) 1.29 ± 0.4 18.0 ± 8.9 18.6 ± 10 33.3 ± 65 26.1 ± 10  
 SCIGAN (Bica et al., 2020) 0.65 ± 0.3 233 ± 218 163 ± 151 254 ± 365 200 ± 248  
 VCNet (Nie et al., 2021) 1.28 ± 0.7 11.3 ± 6.0 9.80 ± 3.3 26.5 ± 51 25.3 ± 31  
 CRNet 0.22 ± 0.1 3.21 ± 1.4 5.19 ± 2.3 8.35 ± 5.0 9.18 ± 2.9  
 w/o BR 0.63 ± 0.4 6.03 ± 4.6 5.60 ± 3.4 9.88 ± 5.9 15.9 ± 23  
 w/o PR 0.92 ± 0.4 35.3 ± 17 36.1 ± 17 36.1 ± 15 38.3 ± 14  
 WDBN 0.20 ± 0.1 2.89 ± 0.7 3.00 ± 1.2 4.19 ± 0.7 8.72 ± 1.5 
 w/o DBSW 0.46 ± 0.2 4.20 ± 1.4 5.47 ± 1.3 9.26 ± 6.6 13.4 ± 7.5  
The CRNet outperforms both DRNet and VCNet, highlighting that 
solely relying on treatment-balanced representation or balancing rep-
resentation can indeed result in a decrease in heterogeneous dose–
response curve estimation. This underscores the effectiveness of the 
double balancing representation condition in enhancing both the con-
straint on unbiasedness and the predictive capacity for heterogeneous 
outcomes. The three-stage WDBN achieves a state-of-the-art perfor-
mance level in all experiments. This demonstrates that weighted re-
gression based on the DBSW can indeed further improve the model’s 
performance in estimating heterogeneous dose–response curves on the 
basis of double balancing representation. The superior performance of 
CRNet and WDBN on the IHDP and News datasets confirms its potential 
application value in fields such as education and marketing.
Ablation studies. To verity the performance of balancing representa-
tion, we conduct the w/o balancing representation (BR) ablation study 
on CRNet, setting the hyperparameter 𝛼 = 0. To assess the performance 
of the prognostic representation, we conduct the w/o prognostic rep-
resentation (PR) ablation study on CRNet, which employs a two-stage 
training strategy: Only loss 𝓁𝐶𝑅

𝛷  is used in the first stage, and only 𝓁𝑀𝑆𝐸

loss is used in the second stage. To validate the performance of double 
balancing sample weight (DBSW), we perform a w/o DBSW ablation 
study on WDBN, wherein the DBSW is omitted and all sample weights 
are set to a constant value of 1.

The results are shown in Tables  2 and 3. Although w/o balancing 
representation achieved good performance in most settings, its perfor-
mance was still significantly degraded compared to CRNet. On the other 
hand, w/o prognostic representation performed poorly in all settings. 
This result aligns with our expectations since the model’s predictive 
accuracy deteriorates when the prognostic representation condition is 
unsatisfied, and the sole reliance on prognostic representation proves 
biased in practice. In w/o DBSW, we find that even without DBSW, the 
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Table 4
Ablation studies (MISE ± std) of CRNet varying values 𝑚 of the number of negative 
sample augmentations.
 𝑛 ∗ 𝑚 Data-1 Data-10 IHDP-1 News-16  
 𝑚 = 0 1.99 ± 0.6 11.0 ± 3.1 0.58 ± 0.3 10.2 ± 2.9  
 𝑚 = 1 1.69 ± 0.5 7.55 ± 2.6 0.22 ± 0.1 9.18 ± 2.9 
 𝑚 = 2 1.69 ± 0.5 7.06 ± 2.4 0.24 ± 0.1 10.1 ± 4.0  
 𝑚 = 3 1.69 ± 0.5 7.38 ± 3.2 0.23 ± 0.1 10.9 ± 5.0  
 𝑚 = 5 1.71 ± 0.6 8.08 ± 3.1 0.23 ± 0.1 10.5 ± 4.1  
 𝑚 = 10 1.70 ± 0.6 7.36 ± 2.7 0.23 ± 0.1 11.5 ± 6.4  

Table 5
Ablation studies (MISE ± std) of WDBN varying values 𝑚 of the number of negative 
sample augmentations.
 𝑛 ∗ 𝑚 Data-1 Data-10 IHDP-1 News-16  
 𝑚 = 0 1.50 ± 0.5 6.76 ± 1.5 0.45 ± 0.2 11.1 ± 5.1  
 𝑚 = 1 1.35 ± 0.5 5.95 ± 1.4 0.20 ± 0.1 8.88 ± 1.3  
 𝑚 = 2 1.28 ± 0.5 5.87 ± 1.2 0.22 ± 0.1 8.72 ± 1.5 
 𝑚 = 3 1.24 ± 0.4 5.81 ± 1.5 0.22 ± 0.1 9.31 ± 2.9  
 𝑚 = 5 1.26 ± 0.5 5.97 ± 1.3 0.23 ± 0.1 8.99 ± 2.0  
 𝑚 = 10 1.20 ± 0.4 6.33 ± 1.5 0.21 ± 0.1 9.06 ± 1.6  

model’s performance remains comparable to previous methods (except 
for CRNet). When DBSW is added, the model’s performance is further 
enhanced. This demonstrates that DBSW can indeed further improve 
the accuracy of HDRC estimation.
Hyperparameters tuning. For the performance of CRNet, we conduct 
experiments to evaluate the impact of hyperparameters 𝛼 in Eq.  (17), 
the dimension of double balancing representation 𝐾𝛷(𝑋) and the batch 
size 𝑏𝑠. As Fig.  4 shown, we found that a large 𝛼 improves estimation 
performance. Nevertheless, when 𝛼 is too large, it will be an obstacle to 
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Fig. 4. The sensitivity experiments (MISE ± std) of CRNet.
Fig. 5. The sensitivity experiments (MISE ± std) of WDBN.
fitting the outcome. Moreover, we found that increasing the dimension 
𝐾𝛷(𝑋) does not lead to a substantial improvement in estimation per-
formance, which implies that CRNet is not sensitive to the dimension. 
The choice of batch size is highly dependent on the dataset. For the low-
dimensional IHDP dataset, model performance improves progressively 
as the batch size increases, with the optimal batch size being the 
entire training set. However, for the high-dimensional News dataset, 
the situation is different—while an excessively small batch size still 
results in performance degradation, indiscriminately increasing the 
batch size can also harm model performance. Therefore, selecting a 
more moderate batch size is necessary for the News dataset.

We further conduct experiments, as shown in Table  4, by increasing 
the number of shuffle times 𝑚 from 0 to 10. The results show a degrada-
tion in performance when 𝑚 = 0, highlighting that naive minimization 
of the partial distance measure can induce mode collapse. Conversely, 
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increasing 𝑚 to 1 significantly improves performance, indicating the 
effectiveness of our designed negative sample constraint. This issue is 
particularly pronounced in high-dimensional datasets such as Data-10 
and News-16.

For the performance of WDBN, we conduct experiments to evaluate 
the impact of hyperparameters 𝛼, 𝛽 in Eqs.  (19) and (23), the dimension 
of double balancing representation 𝐾𝛷(𝑋) and the augmentation of 
negative samples 𝑚. As Fig.  5 and Table  5 shown, we observe that large 
𝛼, 𝛽 and 𝐾𝛷(𝑋) improves estimation performance. However, when they 
are too large, they pose an obstacle to fitting the outcome. The impact 
of batch size on WDBN is similar to its effect on CRNet. However, 
WDBN exhibits a more pronounced performance improvement as batch 
size increases. This is likely due to WDBN’s more complex training 
process compared to CRNet, requiring a larger amount of data to 
achieve optimal performance. Moreover, the trend of 𝑚 changes is 
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also quite similar to that of CRNet (see Table  4): there is a significant 
improvement when the value of 𝑚 increases from 0 to 1, while further 
increasing the value of 𝑚 yields diminishing returns.

8. Discussion

This study has some potential limitations and areas for future ex-
pansion. We assume unconfoundedness assumption and although we 
make efforts to control for potential confounding factors, there remains 
a possibility that unmeasured or unknown confounders may influence 
the results. Fortunately, since our method does not require a specially 
designed neural network structure, it can be easily extended to any 
gradient-based framework. Therefore, it can also be applied to sce-
narios where the above three assumptions are violated. For example, 
our representation learning method can be embedded into the DWR 
framework (Zhao et al., 2022) to relax the SUTVA assumption, in-
corporated into IV methods (Hartford, Lewis, Leyton-Brown, & Taddy, 
2017) or negative control approaches (Xu, Kanagawa, & Gretton, 2021) 
to relax the unconfoundedness assumption, or integrated with beta-
intact-VAE-based methods (Wu & Fukumizu, 2022) to relax the overlap 
assumption. Additionally, different conditional dependence measures 
may lead to different conclusions about the performance of our method. 
To focus on the challenges of heterogeneous causal effect estimation, 
we do not explore the relaxation of these assumptions or additional con-
ditional independence criteria in depth. However, we look forward to 
future work extending the double balancing representation to broader 
settings.

While no well-established evaluation metrics exist for continuous 
treatment effects, in the field of binary treatment estimation using RCT 
data, the Area Under the Uplift Curve (AUUC) and QINI coefficient 
are commonly used as proxies for true causal effects (Zhang, Li, & 
Liu, 2020). Future research could explore the possibility of integrating 
observational data with randomized controlled trial (RCT) data for 
real-world dataset evaluation. One potential approach is to use observa-
tional data for model training while evaluating the model on RCT data 
using AUUC and QINI. However, two key challenges remain:How to 
collect RCT data in scenarios with multi-dimensional continuous treat-
ment variables and how to extend AUUC and QINI metrics from binary 
or multi-valued settings to the multi-dimensional continuous domain 
remain open challenges. We look forward to future work addressing 
these issues.

Given that research on continuous causal effect estimation is still 
in its early stages, we have only preliminarily validated the potential 
applications of our method in education and marketing through semi-
synthetic experiments. However, our approach is not limited to these 
fields. The advantage of our method lies in its ability to provide un-
biased estimation of heterogeneous causal effects in complex scenarios 
involving high-dimensional covariates and multi-dimensional continu-
ous treatments. This capability has broad applications in fields such 
as healthcare, law, and management. For example, in healthcare, our 
method could be used to analyze the effects of different drug dosages 
on patients. We look forward to future studies testing the effectiveness 
of our method in these application domains. 

9. Conclusion

For estimating heterogeneous dose–response curves, we propose an 
end-to-end neural network called CRNet and a three-stage neural net-
work named WDBN. Without disrupting the continuity of treatments, 
these networks distinguish between positive samples 𝑿 and negative 
samples 𝑿′ using a partial distance measure applied to a double balanc-
ing representation. By leveraging these networks to constrain the dou-
ble balancing representation, we enforce unbiasedness in our causal es-
timates and effectively capture the heterogeneous dose–response curves 
from individuals.
11 
CRediT authorship contribution statement

Minqin Zhu: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Project administration, Methodology, Inves-
tigation, Formal analysis, Data curation, Conceptualization. Anpeng 
Wu: Writing – review & editing, Writing – original draft, Methodology. 
Haoxuan Li: Writing – review & editing, Methodology. Ruoxuan 
Xiong: Writing – review & editing, Methodology. Bo Li: Writing – 
review & editing, Conceptualization. Fei Wu: Funding acquisition, Data 
curation, Conceptualization. Kun Kuang: Writing – review & editing, 
Methodology, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China (62376243, 62441605, 62037001), and the Starry Night 
Science Fund of Zhejiang University Shanghai Institute for Advanced 
Study, China (SN-ZJU-SIAS-0010). All opinions in this paper are those 
of the authors and do not necessarily reflect the views of the funding 
agencies.

Data availability

Data will be made available on request.

References

Arbour, D., Dimmery, D., & Sondhi, A. (2021). Permutation weighting. In International 
conference on machine learning (pp. 331–341). PMLR.

Assaad, S., Zeng, S., Tao, C., Datta, S., Mehta, N., Henao, R., et al. (2021). Counter-
factual representation learning with balancing weights. In International conference 
on artificial intelligence and statistics (pp. 1972–1980). PMLR.

Azadkia, M., & Chatterjee, S. (2021). A simple measure of conditional dependence. The 
Annals of Statistics, 49(6), 3070–3102.

Baba, K., Shibata, R., & Sibuya, M. (2004). Partial correlation and conditional 
correlation as measures of conditional independence. Australian & New Zealand 
Journal of Statistics, 46(4), 657–664.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J.-H. (2019). 
Invertible residual networks. In International conference on machine learning (pp. 
573–582). PMLR.

Bica, I., Jordon, J., & van der Schaar, M. (2020). Estimating the effects of continuous-
valued interventions using generative adversarial networks. Advances in Neural 
Information Processing Systems, 33, 16434–16445.

Blum, L., & Blum, M. (2023). A theoretical computer science perspective on 
consciousness and artificial general intelligence. Engineering, 25, 12–16.

Chen, X., & He, K. (2021). Exploring simple siamese representation learning. In 
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 
(pp. 15750–15758).

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for 
contrastive learning of visual representations. In International conference on machine 
learning (pp. 1597–1607). PMLR.

Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., & Carin, L. (2020). Club: A contrastive 
log-ratio upper bound of mutual information. In International conference on machine 
learning (pp. 1779–1788). PMLR.

Doran, G., Muandet, K., Zhang, K., & Schölkopf, B. (2014). A permutation-based kernel 
conditional independence test.. In UAI (pp. 132–141).

Fleuret, F. (2004). Fast binary feature selection with conditional mutual information.. 
Journal of Machine Learning Research, 5(9).

Fong, C., Hazlett, C., & Imai, K. (2018). Covariate balancing propensity score for a 
continuous treatment: Application to the efficacy of political advertisements. The 
Annals of Applied Statistics, 12(1), 156–177.

Gan, L., Li, B., Kuang, K., Zhang, Y., Wang, L., Luu, A., et al. (2023). Exploiting 
contrastive learning and numerical evidence for confusing legal judgment predic-
tion. In Findings of the association for computational linguistics: EMNLP 2023 (pp. 
12174–12185).

http://refhub.elsevier.com/S0893-6080(25)00480-0/sb1
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb1
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb1
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb2
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb2
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb2
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb2
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb2
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb3
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb3
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb3
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb4
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb4
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb4
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb4
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb4
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb5
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb5
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb5
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb5
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb5
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb6
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb6
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb6
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb6
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb6
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb7
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb7
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb7
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb8
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb8
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb8
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb8
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb8
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb9
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb9
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb9
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb9
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb9
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb10
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb10
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb10
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb10
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb10
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb11
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb11
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb11
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb12
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb12
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb12
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb13
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb13
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb13
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb13
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb13
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb14


M. Zhu et al. Neural Networks 189 (2025) 107600 
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et 
al. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 
139–144.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., et al. (2020). 
Bootstrap your own latent-a new approach to self-supervised learning. Advances in 
Neural Information Processing Systems, 33, 21271–21284.

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric 
estimation of average treatment effects. Econometrica, 315–331.

Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting 
method to produce balanced samples in observational studies. Political Analysis, 
20(1), 25–46.

Hansen, B. B. (2008). The prognostic analogue of the propensity score. Biometrika, 
95(2), 481–488.

Hartford, J. S., Lewis, G., Leyton-Brown, K., & Taddy, M. (2017). Deep IV: A flexible 
approach for counterfactual prediction. In International conference on machine 
learning. URL: https://api.semanticscholar.org/CorpusID:29551417.

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsu-
pervised visual representation learning. In Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition (pp. 9729–9738).

Hirano, K., & Imbens, G. W. (2004). The propensity score with continuous treatments. 
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, 
226164, 73–84.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical 
Association, 81(396), 945–960.

Hu, Z., Follmann, D. A., & Wang, N. (2014). Estimation of mean response via the 
effective balancing score. Biometrika, 101(3), 613–624.

Huang, M.-Y., & Chan, K. C. G. (2017). Joint sufficient dimension reduction and 
estimation of conditional and average treatment effects. Biometrika, 104(3), 
583–596.

Huang, W., Yi, M., & Zhao, X. (2021). Towards the generalization of contrastive 
self-supervised learning. arXiv preprint arXiv:2111.00743.

Huling, J. D., Greifer, N., & Chen, G. (2024). Independence weights for causal inference 
with continuous treatments. Journal of the American Statistical Association, 119(546), 
1657–1670.

Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the 
Royal Statistical Society. Series B. Statistical Methodology, 76(1), 243–263.

Imai, K., & Van Dyk, D. A. (2004). Causal inference with general treatment regimes: 
Generalizing the propensity score. Journal of the American Statistical Association, 
99(467), 854–866.

Imbens, G. W. (2000). The role of the propensity score in estimating dose-response 
functions. Biometrika, 87(3), 706–710.

Jing, L., Vincent, P., LeCun, Y., & Tian, Y. (2021). Understanding dimensional 
collapse in contrastive self-supervised learning. In International conference on learning 
representations.

Kallus, N. (2020). Deepmatch: Balancing deep covariate representations for causal 
inference using adversarial training. In International conference on machine learning 
(pp. 5067–5077). PMLR.

Kennedy, E. H., Ma, Z., McHugh, M. D., & Small, D. S. (2017). Non-parametric methods 
for doubly robust estimation of continuous treatment effects. Journal of the Royal 
Statistical Society. Series B. Statistical Methodology, 79(4), 1229–1245.

Lawrance, A. (1976). On conditional and partial correlation. The American Statistician, 
30(3), 146–149.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tutorial on 
energy-based learning. Predicting Structured Data, 1.

Lee, M.-J., & Lee, S. (2022). Review and comparison of treatment effect estimators 
using propensity and prognostic scores. The International Journal of Biostatistics, 
18(2), 357–380.

Li, H., Xiao, Y., Zheng, C., Wu, P., & Cui, P. (2023). Propensity matters: Measuring 
and enhancing balancing for recommendation. In International conference on machine 
learning (pp. 20182–20194). PMLR.

Li, H., Zheng, C., Cao, Y., Geng, Z., Liu, Y., & Wu, P. (2023). Trustworthy policy 
learning under the counterfactual no-harm criterion. In International conference on 
machine learning (pp. 20575–20598). PMLR.

Li, H., Zheng, C., Wu, P., Kuang, K., Liu, Y., & Cui, P. (2023). Who should be given 
incentives? counterfactual optimal treatment regimes learning for recommendation. 
In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data 
mining (pp. 1235–1247).

Mealli, F., Pacini, B., & Rubin, D. B. (2011). Statistical inference for causal effects. 
Modern Analysis of Customer Surveys: With Applications using R, 171–192.

Nie, L., Ye, M., Liu, Q., & Nicolae, D. (2021). Vcnet and functional targeted regulariza-
tion for learning causal effects of continuous treatments. In International conference 
on learning representations.

Pan, Y. (2023). Structure analysis of crowd intelligence systems. Engineering, 25, 17–20.
Pearl, J. (2009). Causality. Cambridge University Press.
Raita, Y., Camargo, C. A., Jr., Liang, L., & Hasegawa, K. (2021). Leveraging ‘‘big data’’ 

in respiratory medicine–data science, causal inference, and precision medicine. 
Expert Review of Respiratory Medicine, 15(6), 717–721.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in 
observational studies for causal effects. Biometrika, 70(1), 41–55.
12 
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and 
nonrandomized studies.. Journal of Educational Psychology, 66(5), 688.

Runge, J. (2018). Conditional independence testing based on a nearest-neighbor 
estimator of conditional mutual information. In International conference on artificial 
intelligence and statistics (pp. 938–947). PMLR.

Schwab, P., Linhardt, L., Bauer, S., Buhmann, J. M., & Karlen, W. (2020). Learning 
counterfactual representations for estimating individual dose-response curves. In 
Proceedings of the AAAI conference on artificial intelligence: vol. 34, (04), (pp. 
5612–5619).

Shalit, U., Johansson, F. D., & Sontag, D. (2017). Estimating individual treatment effect: 
generalization bounds and algorithms. In International conference on machine learning 
(pp. 3076–3085). PMLR.

Shi, C., Blei, D., & Veitch, V. (2019). Adapting neural networks for the estimation of 
treatment effects. Advances in Neural Information Processing Systems, 32.

Shi, X., Miao, W., & Tchetgen, E. T. (2020). A selective review of negative control 
methods in epidemiology. Current Epidemiology Reports, 7(4), 190–202.

Stuart, E. A., Lee, B. K., & Leacy, F. P. (2013). Prognostic score–based balance measures 
can be a useful diagnostic for propensity score methods in comparative effectiveness 
research. Journal of Clinical Epidemiology, 66(8), S84–S90.

Székely, G. J., & Rizzo, M. L. (2014). Partial distance correlation with methods for 
dissimilarities. The Annals of Statistics, 42(6), 2382–2412.

Vegetabile, B. G., Griffin, B. A., Coffman, D. L., Cefalu, M., Robbins, M. W., & 
McCaffrey, D. F. (2021). Nonparametric estimation of population average dose-
response curves using entropy balancing weights for continuous exposures. Health 
Services and Outcomes Research Methodology, 21(1), 69–110.

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment 
effects using random forests. Journal of the American Statistical Association, 113(523), 
1228–1242.

Wang, H., Chen, Z., Fan, J., Li, H., Liu, T., Liu, W., et al. (2023). Optimal transport 
for treatment effect estimation. Advances in Neural Information Processing Systems.

Wang, T., & Isola, P. (2020). Understanding contrastive representation learning through 
alignment and uniformity on the hypersphere. In International conference on machine 
learning (pp. 9929–9939). PMLR.

Wu, P. A., & Fukumizu, K. (2022). 𝛽-Intact-VAE: Identifying and estimating causal 
effects under limited overlap. In International conference on learning representations. 
URL: https://api.semanticscholar.org/CorpusID:265099243.

Wu, A., Kuang, K., Li, B., & Wu, F. (2022). Instrumental variable regression 
with confounder balancing. In International conference on machine learning (pp. 
24056–24075). PMLR.

Wu, A., Kuang, K., Xiong, R., Li, B., & Wu, F. (2023). Stable estimation of heterogeneous 
treatment effects. In International conference on machine learning (pp. 37496–37510). 
PMLR.

Wu, Z., Xiong, Y., Yu, S. X., & Lin, D. (2018). Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 3733–3742).

Wu, A., Yuan, J., Kuang, K., Li, B., Wu, R., Zhu, Q., et al. (2022). Learning decomposed 
representations for treatment effect estimation. IEEE Transactions on Knowledge and 
Data Engineering, 35(5), 4989–5001.

Wyner, A. D. (1978). A definition of conditional mutual information for arbitrary 
ensembles. Information and Control, 38(1), 51–59.

Xu, J., Hong, N., Xu, Z., Zhao, Z., Wu, C., Kuang, K., et al. (2023). Data-driven learning 
for data rights, data pricing, and privacy computing. Engineering, 25, 66–76.

Xu, L., Kanagawa, H., & Gretton, A. (2021). Deep proxy causal learning and its 
application to confounded bandit policy evaluation. ArXiv arXiv:2106.03907, URL: 
https://api.semanticscholar.org/CorpusID:235367652.

Yao, D., Zhao, Z., Zhang, S., Zhu, J., Zhu, Y., Zhang, R., et al. (2022). Contrastive 
learning with positive-negative frame mask for music representation. In WWW ’22: 
the ACM web conference 2022, virtual event, lyon, France, April 25 - 29, 2022 (pp. 
2906–2915). ACM.

Yuan, L., & Zhu, S.-C. (2023). Communicative learning: A unified learning formalism. 
Engineering, 25, 77–100.

Zhang, M., Huang, S., Li, W., & Wang, D. (2022). Tree structure-aware few-shot image 
classification via hierarchical aggregation. In European conference on computer vision 
(pp. 453–470). Springer.

Zhang, W., Li, J., & Liu, L. (2020). A unified survey of treatment effect heterogeneity 
modelling and uplift modelling. ACM Computing Surveys, 54, 1–36, URL: https:
//api.semanticscholar.org/CorpusID:220793171.

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional 
independence test and application in causal discovery. arXiv preprint arXiv:1202.
3775.

Zhang, S., Yao, D., Zhao, Z., Chua, T., & Wu, F. (2021). CauseRec: Counterfactual 
user sequence synthesis for sequential recommendation. In SIGIR ’21: the 44th 
international ACM SIGIR conference on research and development in information 
retrieval, virtual event, Canada, July 11-15, 2021 (pp. 367–377). ACM.

Zhao, Z., Bai, Y., Xiong, R., Cao, Q., Ma, C., Jiang, N., et al. (2022). Learning individual 
treatment effects under heterogeneous interference in networks. ACM Transactions 
on Knowledge Discovery from Data, URL: https://api.semanticscholar.org/CorpusID:
253107774.

Zhen, X., Meng, Z., Chakraborty, R., & Singh, V. (2022). On the versatile uses of 
partial distance correlation in deep learning. In Computer vision–ECCV 2022: 17th 
European conference, tel aviv, Israel, October 23–27, 2022, proceedings, part XXVI (pp. 
327–346). Springer.

http://refhub.elsevier.com/S0893-6080(25)00480-0/sb15
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb15
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb15
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb15
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb15
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb16
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb16
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb16
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb16
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb16
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb17
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb17
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb17
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb18
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb18
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb18
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb18
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb18
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb19
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb19
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb19
https://api.semanticscholar.org/CorpusID:29551417
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb21
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb21
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb21
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb21
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb21
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb22
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb22
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb22
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb22
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb22
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb23
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb23
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb23
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb24
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb24
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb24
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb25
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb25
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb25
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb25
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb25
http://arxiv.org/abs/2111.00743
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb27
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb27
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb27
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb27
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb27
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb28
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb28
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb28
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb29
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb29
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb29
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb29
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb29
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb30
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb30
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb30
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb31
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb31
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb31
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb31
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb31
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb32
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb32
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb32
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb32
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb32
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb33
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb33
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb33
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb33
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb33
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb34
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb34
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb34
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb35
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb35
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb35
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb36
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb36
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb36
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb36
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb36
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb37
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb37
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb37
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb37
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb37
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb38
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb38
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb38
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb38
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb38
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb39
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb40
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb40
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb40
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb41
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb41
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb41
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb41
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb41
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb42
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb43
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb44
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb44
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb44
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb44
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb44
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb45
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb45
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb45
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb46
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb46
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb46
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb47
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb47
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb47
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb47
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb47
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb48
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb49
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb49
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb49
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb49
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb49
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb50
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb50
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb50
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb51
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb51
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb51
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb52
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb52
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb52
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb52
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb52
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb53
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb53
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb53
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb54
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb55
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb55
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb55
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb55
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb55
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb56
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb56
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb56
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb57
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb57
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb57
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb57
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb57
https://api.semanticscholar.org/CorpusID:265099243
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb59
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb59
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb59
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb59
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb59
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb60
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb60
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb60
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb60
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb60
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb61
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb61
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb61
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb61
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb61
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb62
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb62
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb62
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb62
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb62
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb63
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb63
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb63
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb64
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb64
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb64
http://arxiv.org/abs/2106.03907
https://api.semanticscholar.org/CorpusID:235367652
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb66
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb67
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb67
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb67
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb68
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb68
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb68
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb68
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb68
https://api.semanticscholar.org/CorpusID:220793171
https://api.semanticscholar.org/CorpusID:220793171
https://api.semanticscholar.org/CorpusID:220793171
http://arxiv.org/abs/1202.3775
http://arxiv.org/abs/1202.3775
http://arxiv.org/abs/1202.3775
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb71
https://api.semanticscholar.org/CorpusID:253107774
https://api.semanticscholar.org/CorpusID:253107774
https://api.semanticscholar.org/CorpusID:253107774
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73
http://refhub.elsevier.com/S0893-6080(25)00480-0/sb73

	Learning double balancing representation for heterogeneous dose–response curve estimation
	Introduction
	Related Work
	Problem Setup
	Motivation
	End-to-End CRNet
	Contrastive Regularizer
	End-to-End CRNet

	Three-Stage WDBN
	Double Contrastive Regularizer
	Double Balancing Sample Weight
	Three-Stage WDBN

	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


